817 research outputs found

    Cyclostationary analysis of analog least mean square loop for self-interference cancellation in in-band full-duplex systems

    Get PDF
    © 2017 IEEE. Analog least mean square (ALMS) loop is a promising mechanism to suppress self-interference (SI) in an in-band full-duplex (IBFD) system. In this letter, a general solution for the weighting error function is derived to investigate the performance of the ALMS loop employed in any IBFD system. The solution is then applied to IBFD systems with single carrier and multicarrier signaling. Due to the cyclostationary property of the transmitted signal, the weighting error function in the multicarrier system varies more significantly than in the single carrier. Therefore, if the ALMS loop can perfectly mimic the SI channel, SI in the single carrier system can be suppressed to a much smaller level than that in the multi-carrier counterpart

    Unitary differential space-time-frequency codes for MB-OFDM UWB

    Get PDF
    In a multiple-input multiple-output (MIMO) multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) system, coherent detection where the channel state information (CSI) is assumed to be exactly known at the receiver requires the transmission of a large number of symbols for channel estimation, thus reducing the bandwidth efficiency. This paper examines the use of unitary differential space-time frequency codes (DSTFCs) in MB-OFDM UWB, which increases the system bandwidth efficiency due to the fact that no CSI is required for differential detection. The proposed DSTFC MB-OFDM system would be useful when the transmission of multiple channel estimation symbols is impractical or uneconomical. Simulation results show that the application of DSTFCs can significantly improve the bit error performance of conventional differential MB-OFDM system (without MIMO). ©2009 IEEE

    Comprehensive performance analysis of fully cooperative communication in WBANs

    Get PDF
    © 2013 IEEE. While relay-based cooperative networks (widely known in the literature as cooperative communication), where relays only forward signals from the sources to the destination, have been extensively researched, fully cooperative systems have not been thoroughly examined. Unlike relay networks, in a fully cooperative network, each node acts as both a source node sending its own data and a relay forwarding its partner's data to the destination. Mutual cooperation between neighboring nodes is believed to improve the overall system error performance, especially when space-time codes are incorporated. However, a comprehensive performance analysis of space-time-coded fully cooperative communication from all three perspectives, namel,y error performance, outage probability, and energy efficiency, is still missing. Answers to the commonly asked questions of whether, in what conditions, and to what extent the space-time-coded fully cooperative communication is better than direct transmission are still unknown. Motivated by this fact and inspired by the increasing popularity of healthcare applications in wireless body area networks (WBANs), this paper derives for the first time a comprehensive performance analysis of a decode-and-forward space-time coded fully cooperative communication network in Rayleigh and Rician fading channels in either identically or non-identically distributed fading scenario. Numerical analysis of error performance, outage probability, and energy efficiency, validated by simulations, show that fully cooperative communication is better than direct transmission from all three aspects in many cases, especially at a low-power and low signal-to-noise ratio regime, which is a typical working condition in WBANs

    Analog least mean square loop for self-interference cancellation: A practical perspective

    Get PDF
    ©2020 by the authors. Licensee MDPI, Basel, Switzerland. Self-interference (SI) is the key issue that prevents in-band full-duplex (IBFD) communications from being practical. Analog multi-tap adaptive filter is an efficient structure to cancel SI since it can capture the nonlinear components and noise in the transmitted signal. Analog least mean square (ALMS) loop is a simple adaptive filter that can be implemented by purely analog means to sufficiently mitigate SI. Comprehensive analyses on the behaviors of the ALMS loop have been published in the literature. This paper proposes a practical structure and presents an implementation of the ALMS loop. By employing off-the-shelf components, a prototype of the ALMS loop including two taps is implemented for an IBFD system operating at the carrier frequency of 2.4 GHz. The prototype is firstly evaluated in a single carrier signaling IBFD system with 20 MHz and 50 MHz bandwidths, respectively. Measured results show that the ALMS loop can provide 39 dB and 33 dB of SI cancellation in the radio frequency domain for the two bandwidths, respectively. Furthermore, the impact of the roll-off factor of the pulse shaping filter on the SI cancellation level provided by the prototype is presented. Finally, the experiment with multicarrier signaling shows that the performance of the ALMS loop is the same as that in the single carrier system. These experimental results validate the theoretical analyses presented in our previous publications on the ALMS loop behaviors

    Analog Least Mean Square Loop with I/Q Imbalance for Self-Interference Cancellation in Full-Duplex Radios

    Full text link
    © 1967-2012 IEEE. Analog least mean square (ALMS) loop is a promising structure for self-interference (SI) mitigation in full-duplex radios due to its simplicity and adaptive capability. However, being constructed from in-phase/quadrature (I/Q) demodulators and modulators to process complex signals, the ALMS loop may face I/Q imbalance problems. Thus, in this paper, the effects of frequency-independent I/Q imbalance in the ALMS loop are investigated. It is revealed that I/Q imbalance affects the loop gain and the level of SI cancellation. The loop gain can be easily compensated by adjusting the gain at other stages of the ALMS loop. Meanwhile, the degradation on cancellation performance is proved to be insignificant even under severe conditions of I/Q imbalance. In addition, an upper bound of the degradation factor is derived to provide an essential reference for the system design. Simulations are conducted to confirm the theoretical analyses

    STC-MIMO Block Spread OFDM in Frequency Selective Rayleigh Fading Channels

    Full text link
    In this paper, we expand the idea of spreading the transmitted symbols in OFDM systems by unitary spreading matrices based on the rotated Hadamard or rotated Discrete Fourier Transform (DFT) matrices proposed in the literature to apply to Space-Time Coded Multiple-Input Multiple-Output OFDM(STC-MIMO-OFDM) systems. We refer the resulting systems to as STC-MIMO Block Spread OFDM (STC-MIMO-BOFDM) systems. In the proposed systems, a multi-dimensional diversity, including time, frequency, space and modulation diversities, can be used, resulting in better bit error performance in frequency selective Rayleigh fading channels compared to the conventional OFDM systems with or without STCs. Simulations carried out with the Alamouti code confirm the advantage of the proposed STC-MIMO-BOFDM systems

    Analog Least Mean Square Loop for Self-Interference Cancellation: Implementation and Measurements

    Get PDF
    Analog least mean square (ALMS) loop is a simple and efficient adaptive filter to cancel self-interference (SI) in in-band full-duplex (IBFD) radios. This paper proposes a practical structure and presents an implementation of the ALMS loop. By employing off-the-shelf components, a prototype of the ALMS loop including two taps is implemented. The prototype is evaluated in IBFD systems which have 20 MHz and 50 MHz bandwidths, respectively, with the carrier frequency of 2.4 GHz. The performance of the prototype with different roll-off factors of the transmit pulse shaping filter is also examined. Experimental results show that the ALMS loop can provide 39 dB and 33 dB of SI cancellation for the two systems, respectively. Furthermore, when the roll-off factor of the pulse shaping filter changes, different levels of cancellation given by the prototype are also demonstrated accordingly. These experimental results validate the theoretical analyses presented in our previous publications on the ALMS loop behaviors

    Frequency-domain characterization and performance bounds of ALMS loop for RF self-interference cancellation

    Get PDF
    © 1972-2012 IEEE. Analog least mean square (ALMS) loop is a promising method to cancel self-interference (SI) in in-band full-duplex (IBFD) systems. In this paper, the steady state analyses of the residual SI powers in both analog and digital domains are firstly derived. The eigenvalue decomposition is then utilized to investigate the frequency domain characteristics of the ALMS loop. Our frequency domain analyses prove that the ALMS loop has an effect of amplifying the frequency components of the residual SI at the edges of the signal spectrum in the analog domain. However, the matched filter in the receiver chain will reduce this effect, resulting in a significant improvement of the interference suppression ratio (ISR). It means that the SI will be significantly suppressed in the digital domain before information data detection. This paper also derives the lower bounds of ISRs given by the ALMS loop in both analog and digital domains. These lower bounds are joint effects of the loop gain, tap delay, number of taps, and transmitted signal properties. The discovered relationship among these parameters allows the flexibility in choosing appropriate parameters when designing the IBFD systems under given constraints

    Analog Least Mean Square Loop for Self-Interference Cancellation in Generalized Continuous Wave SAR

    Get PDF
    © 2018 IEEE. Generalized continuous wave synthetic aperture radar (GCW-SAR) is a promising new imaging radar system since it applies the full-duplex (FD) transmission technique to achieve continuous signaling in order to overcome several fundamental limitations of the conventional pulsed SARs. As in any FD wireless communication system, self-interference (SI) is also a key problem which can impact on the GCW-SAR system. In this paper, the analog least mean square (ALMS) loop in the radio frequency domain is adopted to cancel the SI for a GCW-SAR system with periodic chirp signaling. The average residual SI power after the ALMS loop is analyzed theoretically by a stationary analysis. It is found that the ALMS loop not only works with random signals in general FD communication systems, but also works well with the periodic signal in GCW-SAR systems. Simulation results show that over 45 dB SI cancellation can be achieved by the ALMS loop which ensures the proper operation of the GCW-SAR system

    Analog Least Mean Square Loop for Self-Interference Cancellation: Implementation and Measurements

    Full text link
    • …
    corecore